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N AND ∆ RESONANCES

Written April 2012 by E. Klempt (University of Bonn) and R.L
Workman, (George Washington University).

I. Introduction

The excited states of the nucleon have been studied in a

large number of formation and production experiments. The

Breit-Wigner masses and widths, the pole positions, and the

elasticities of the N and ∆ resonances in the Baryon Summary

Table come largely from partial-wave analyses of πN total,

elastic, and charge-exchange scattering data. The most com-

prehensive analyses were carried out by the Karlsruhe-Helsinki

(KH80) [1], Carnegie Mellon-Berkeley (CMB80) [2], and

George Washington U (GWU) [3] groups. Partial-wave anal-

yses have also been performed on much smaller πN reaction

data sets to get Nη, ΛK, and ΣK branching fractions. Other

branching fractions come from analyses of πN → Nππ data.

A number of groups have undertaken multichannel analyses of

these and associated photo-induced reactions (see Sec. VI).

In recent years, a large amount of data on photoproduction

of many final states has been accumulated, and these data

are beginning to make a significant impact on the properties

of baryon resonances. A survey of data on photoproduction

can be found in the proceedings of recent conferences [4] and

workshops [5], and in a recent review [6].

II. Naming scheme for baryon resonances

In the past, when nearly all resonance information came

from elastic πN scattering, it was common to label reso-

nances with the incoming partial wave L2I,2J , as in ∆(1232)P33

and N(1680)F15. However, most recent information has come

from γN experiments. Therefore, we have replaced L2I,2J with

the spin-parity JP of the state, as in ∆(1232) 3/2+ and

N(1680) 5/2+. This applies to all baryons, including those

such as the Ξ resonances and charm baryons that are not pro-

duced in formation experiments. Names of the stable baryons

(N, Λ, Σ, Ξ, Ω, Λc, · · ·) have no spin, parity, or mass attached.
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Table 1. The status of the N resonances. Only those
with an overall status of ∗∗∗ or ∗∗∗∗ are included in the
main Baryon Summary Table.

Status as seen in —

Particle JP

Status
overall πN γN Nη Nσ Nω ΛK ΣK Nρ ∆π

N 1/2+ ∗∗∗∗
N(1440) 1/2+ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗ ∗ ∗∗∗
N(1520) 3/2− ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
N(1535) 1/2− ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗ ∗
N(1650) 1/2− ∗∗∗∗ ∗∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗ ∗∗ ∗∗∗
N(1675) 5/2− ∗∗∗∗ ∗∗∗∗ ∗∗∗ ∗ ∗ ∗ ∗∗∗
N(1680) 5/2+ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗ ∗∗ ∗∗∗ ∗∗∗
N(1685) ?? ∗
N(1700) 3/2− ∗∗∗ ∗∗∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗∗
N(1710) 1/2+ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗ ∗ ∗∗
N(1720) 3/2+ ∗∗∗∗ ∗∗∗∗ ∗∗∗ ∗∗∗ ∗∗ ∗∗ ∗∗ ∗
N(1860) 5/2+ ∗∗ ∗∗ ∗ ∗
N(1875) 3/2− ∗∗∗ ∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗ ∗∗∗
N(1880) 1/2+ ∗∗ ∗ ∗ ∗∗ ∗
N(1895) 1/2− ∗∗ ∗ ∗∗ ∗∗ ∗∗ ∗
N(1900) 3/2+ ∗∗∗ ∗∗ ∗∗∗ ∗∗ ∗∗ ∗∗∗ ∗∗ ∗ ∗∗
N(1990) 7/2+ ∗∗ ∗∗ ∗∗ ∗
N(2000) 5/2+ ∗∗ ∗ ∗∗ ∗∗ ∗∗ ∗ ∗∗
N(2040) 3/2+ ∗
N(2060) 5/2− ∗∗ ∗∗ ∗∗ ∗ ∗∗
N(2100) 1/2+ ∗
N(2150) 3/2− ∗∗ ∗∗ ∗∗ ∗∗ ∗∗
N(2190) 7/2− ∗∗∗∗ ∗∗∗∗ ∗∗∗ ∗ ∗∗ ∗
N(2220) 9/2+ ∗∗∗∗ ∗∗∗∗
N(2250) 9/2− ∗∗∗∗ ∗∗∗∗
N(2600) 11/2− ∗∗∗ ∗∗∗
N(2700) 13/2+ ∗∗ ∗∗

∗∗∗∗ Existence is certain, and properties are at least fairly well explored.
∗∗∗ Existence is very likely but further confirmation of quantum

numbers and branching fractions is required.

∗∗ Evidence of existence is only fair.
∗ Evidence of existence is poor.
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Table 2. The status of the ∆ resonances. Only those with an
overall status of ∗∗∗ or ∗∗∗∗ are included in the main Baryon
Summary Table.

Status as seen in —

Particle JP

Status
overall πN γN Nη Nσ Nω ΛK ΣK Nρ ∆π

∆(1232) 3/2+ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ F

∆(1600) 3/2+ ∗∗∗ ∗∗∗ ∗∗∗ o ∗ ∗∗∗
∆(1620) 1/2− ∗∗∗∗ ∗∗∗∗ ∗∗∗ r ∗∗∗ ∗∗∗
∆(1700) 3/2− ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ b ∗∗ ∗∗∗
∆(1750) 1/2+ ∗ ∗ i

∆(1900) 1/2− ∗∗ ∗∗ ∗∗ d ∗∗ ∗∗ ∗∗
∆(1905) 5/2+ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ d ∗∗∗ ∗∗ ∗∗
∆(1910) 1/2+ ∗∗∗∗ ∗∗∗∗ ∗∗ e ∗ ∗ ∗∗
∆(1920) 3/2+ ∗∗∗ ∗∗∗ ∗∗ n ∗∗∗ ∗∗
∆(1930) 5/2− ∗∗∗ ∗∗∗
∆(1940) 3/2− ∗∗ ∗ ∗∗ F (seen in ∆η)

∆(1950) 7/2+ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ o ∗∗∗ ∗ ∗∗∗
∆(2000) 5/2+ ∗∗ r ∗∗
∆(2150) 1/2− ∗ ∗ b

∆(2200) 7/2− ∗ ∗ i

∆(2300) 9/2+ ∗∗ ∗∗ d

∆(2350) 5/2− ∗ ∗ d

∆(2390) 7/2+ ∗ ∗ e

∆(2400) 9/2− ∗∗ ∗∗ n

∆(2420) 11/2+ ∗∗∗∗ ∗∗∗∗ ∗
∆(2750) 13/2− ∗∗ ∗∗
∆(2950) 15/2+ ∗∗ ∗∗

∗∗∗∗ Existence is certain, and properties are at least fairly well explored.
∗∗∗ Existence is very likely but further confirmation of quantum

numbers and branching fractions is required.

∗∗ Evidence of existence is only fair.
∗ Evidence of existence is poor.

May 25, 2012 12:29



– 4–

III. Using the N and ∆ listings

Tables 1 and 2 list all the N and ∆ entries in the Baryon

Listings and give our evaluation of the overall status, the status

from πN → Nπ scattering data and from photoproduction

experiments, and the status channel by channel. Only the es-

tablished resonances (overall status 3 or 4 stars) are promoted

to the Baryon Summary Table. We have omitted from the List-

ings information from old analyses, prior to KH80 and CMB80

which can be found in earlier editions. A rather complete survey

of older results was given in our 1982 edition [7].

The star rating assigned to a resonance depends on the

data base and the analysis. As a rule, we award an overall

status *** or **** only to those resonances which are con-

firmed by independent analyses and which are derived from

analyses based on complete information, i.e., for analyses based

on three observables in πN scattering or eight properly chosen

observables in photoproduction. Use of dispersion relations (as

in the KH80, CMB80, and GWU analyses) may lift these re-

quirements. Three and four-star resonances should be observed

in one of their strongest decay modes. Weak signals or signals

emerging in analyses with incomplete experimental information

are given ** or * status. We do not consider new results without

proper error evaluation.

In the Data Listings, we give first the Breit-Wigner mass and

width but warn the reader that Breit-Wigner parameters depend

on the formalism used, such as for angular momentum barrier

factors or cut-off parameters, and the assumed or modeled

background. Then we give pole-related quantities, such as the

position of the pole and its elastic residue. For the first time,

we give residues and phases of hadronic transition amplitudes

and helicity amplitudes. Branching ratios and photoproduction

amplitudes follow.

IV. Properties of resonances

Resonances are defined by poles of the scattering amplitude

in the complex energy w =
√

s plane [8]. In contrast to other

quantities related to resonance phenomena, such as the Breit-

Wigner mass or the K-matrix pole, a pole of the scattering
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amplitude does not depend on the chosen field parameteriza-

tion, and production and decay properties factorize. It is the

pole position which should be compared to eigenvalues of the

Hamiltonian of full QCD.

Examining the Listings, one finds a much larger spread

in Breit-Wigner parameters compared to pole parameters. In

his pole-emic against Breit-Wigner parameters, Höhler [9]

concluded: “In contrast to the conventional (Breit-Wigner) pa-

rameters, the pole positions and speed plots have a well-defined

relation to S-matrix theory. They also give more information on

the resonances and thresholds and can be used for the prediction

on other reactions that couple to the excited states [italics in

original].”

In scattering theory, the amplitude for the scattering process

leading from the initial state a to the final state b is given by

the S matrix, which can be decomposed as follows:

Sab = Iab + 2i
√

ρaTab
√

ρb . (1)

Here Iab is the identity operator, and Tab describes the transition

from the initial state to the final state (e.g. πN to ΣK). Tab

contains coupling constants, the decay momenta k to the

power L to yield the correct threshold behavior when angular

momenta are involved, and a correction F (L, r2, k2), e.g. in

Blatt-Weisskopf form, with a range parameter r. The two-body

phase-space ρ is given (see Eq. 39.17 in Sec. 39) by

ρ(s)=
1

16π

2|~k|√
s

. (2)

The transition amplitude T contains poles due to resonances and

background terms. Above the threshold for inelastic reactions,

a resonance is associated with a cluster of poles in different

Riemann sheets. The pole closest to the real axis has the

strongest impact on the data. It is situated on the second

Riemann sheet, starting at the highest threshold below the pole

position. If the threshold is close to the pole position, poles in

other sheets may have an important impact as well.

Other complications may occur: Broad resonances are dif-

ficult to disentangle from background amplitudes, e.g., due to
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left-hand cuts originating from meson and baryon exchange

forces. A two-particle subsystem generates a square-root singu-

larity at its threshold; poles in a two-body subsystem, e.g., the

ρ meson in the ππ system, lead to branch points in the complex

energy plane. Neglecting some of these aspects leads to a model

dependence of the pole position. These uncertainties increase

with the particle width.

Several particle properties are related to poles. First, poles

exist on multiple Riemann sheets. In the Listings, we give for

each resonance the position of the most relevant pole. The poles

of the scattering amplitude can be found by analytic continua-

tion of the amplitude. The real part of the pole position in the

complex energy plane defines the particle mass, the imaginary

part its half width: wpole = mpole − iΓpole/2. Residues of tran-

sition amplitudes are the first term in a Laurent expansion and

can be calculated through a contour integral of the amplitude

Tab around the pole position in the energy plane:

Res(a → b) =

∮

d
√

s

2πi

√
ρa Tab(s)

√
ρb

=
1

2wpole

√

ρa(spole) ga gb

√

ρb(spole) , (4)

where ga and gb are coupling constants. In the Listings, we give

normalized residues, Res(a → b)/Γpole. For elastic scattering,

e.g., for πN → Nπ, this gives the elastic residue:

Res(a → a) =
1

2wpole

ρa(spole)g
2
a. (5)

Branching ratios of a pole can be defined by

BRpole(channel b) =
|Res(πN → b)|2

|Res(πN → Nπ)| ·
(

Γpole/2
) . (6)

This information is, however, not given in the literature.

Within models, background amplitudes can be parameter-

ized using an effective Lagrangian approach (as in dynamical

coupled-channel approaches), or by low-order polynomial func-

tions. In the latter case, resonances are then added, sometimes

in the form of Breit-Wigner amplitudes. In the Listings, particle

properties related to fits to data using Breit-Wigner amplitudes
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are given as well. These are the Breit-Wigner mass and width,

the partial decay widths, and the branching ratios. It should be

noted that Breit-Wigner parameters depend on the background

parameterization.

The multichannel relativistic Breit-Wigner amplitude is

given by

Aab =
√

ρaTab
√

ρb =
−gagb

√
ρaρb

s − m2
BW + i

∑

a
g2
aρa

, (7)

where mBW is called the Breit-Wigner mass. In the case of two

channels, Eq. (7) is known as the Flatté formula. The inclusion

of angular momenta leads to additional factors. The energy-

dependent partial decay widths, defined by
√

s Γa(s) = g2
aρa(s),

can be used to bring Eq. (7) into the form of Eq. (39.57).

Evaluated at the Breit-Wigner mass, it gives the partial decay

width Γa at the resonance position

mBWΓa = g2
aρa(m

2
BW ). (8)

The branching ratio for the decay of a resonance into channel a,

BRa = Γa/ΓBW , (9)

vanishes by definition for decay modes with thresholds above

the Breit-Wigner mass. That the sum
∑

a BRa equals one

follows from the definition. Unobserved decay modes lead to

the inequality
∑

a BRa ≤ 1. In the case of broad resonances,

definitions (8) and (9) may be counter-intuitive. Branching

ratios can also be defined as

BR′ =

∞
∫

threshold

ds

π

g2
aρ(s)

(m2
BW − s)2 + (

∑

a
g2
aρa(s))2

. (10)

These branching ratios include decays of resonances into chan-

nels with thresholds above their nominal masses. The relation
∑

a BR′
a = 1 is needed for normalization.

V. Electromagnetic interactions

A new approach to the nucleon excitation spectrum is pro-

vided by dedicated facilities at the Universities of Bonn and
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Mainz, and at the national laboratories Jefferson Lab in the

US and SPring-8 in Japan. High-precision cross sections and

polarization observables in photoproduction of pseudoscalar

mesons provide a data set that is nearly a “complete experi-

ment,” one that fully constrains the four complex amplitudes

describing the spin-structure of the reaction. A large number of

photoproduction reactions has been studied.

In photoproduction, the spins of the photon and nucleon

can be parallel or anti-parallel, and there are spin-flip and non-

flip transitions. Four independent amplitudes can be defined

using the photon polarization and the hadronic current [10].

The amplitudes can be expanded in a series of electric and

magnetic multipoles. In general, two amplitudes, one electric

and one magnetic, contribute to one JP combination. For

a given resonance, these two amplitudes are related to the

helicity amplitudes A1/2 and A3/2. The final state may have

isospin I = 1/2 or I = 3/2.

If a Breit-Wigner parametrization is used, the Nγ partial

width, Γγ , is given in terms of the helicity amplitudes A1/2 and

A3/2 by

Γγ =
k2

BW

π

2mN

(2J + 1)mBW

(

|A1/2|2 + |A3/2|2
)

. (11)

Here mN and mBW are the nucleon and resonance masses, J is

the resonance spin, and kBW is the photon c.m. decay momen-

tum. Most earlier analyses have quoted the real quantities A1/2

and A3/2.

Other more recent studies have quoted related complex

quantities, evaluated at the T-matrix pole. The complex helicity

amplitudes for photoproduction of the final state b, Ã1/2 and

Ã3/2, are given by

Res
(

(γN)h → b
)

=
Ãhgb

2wpole

| kpole|
√

2mN

(2J + 1)π
· ρb(w

2
pole).

(12)

Ã1/2 and Ã3/2 are defined at the pole position, and are normal-

ized to reproduce Eq. (11) when the pole position is replaced

by the Breit-Wigner mass.

May 25, 2012 12:29



– 9–

The amplitudes Ã1/2 and Ã3/2, the elastic residues, and

the residues of the transition amplitudes are complex numbers.

Eq. (8) defines gNπ up to a sign. (Here, gNπ is the Nπ decay

constant of a resonance, not the πN coupling constant!) Due

to Eq. (12), the phase of the helicity amplitude depends on this

definition. We define the phase of gNπ clockwise.

The determination of eight real numbers from four complex

amplitudes (with one overall phase undetermined) requires at

least seven independent data points. At least one further mea-

surement is required to resolve discrete ambiguities that result

from the fact that data are proportional to squared amplitudes.

Photon beams and nucleon targets can be polarized (with linear

or circular polarization P⊥, P⊙, and ~T , respectively); and the

recoil polarization of the outgoing nucleon ~R can be measured.

Experiments can be divided into three classes: those with polar-

ized photons and a polarized target (BT); and those measuring

the baryon recoil polarization and using either a polarized pho-

ton (BR) or a polarized target (TR). Different sign conventions

are used in the literature, as summarized in Ref. 12.

A large number of polarization observables has been deter-

mined that constrain energy-dependent partial-wave solutions.

One of the best studied reactions is γp → ΛK+. Published

data include differential cross sections, the beam asymmetry

Σ, the target asymmetry T , the recoil polarization P , and

the BR double-polarization variables Cx, Cz, Ox, and Oz. For

γp → pπ0, γp → nπ+, and γp → pη, differential cross sections

and beam asymmetries have been published; BT data for E, F ,

G, and H have been presented at conferences [13].

Electroproduction of mesons provides information on the in-

ternal structure of resonances. The helicity amplitudes become

functions of the momentum transfer, and a third amplitude,

S1/2, contributes to the process. Recent experimental results

and their interpretation are reviewed by I.G. Aznauryan and

V.D. Burkert [14] and by L. Tiator, D. Drechsel, S.S. Kamalov,

and M. Vanderhaeghen [15].

VI. Partial wave analyses

Several PWA groups are now actively involved in the anal-

ysis of the new data. Of the three “classical” analysis groups at
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KH, CMB, and GWU, only the GWU group is still active. This

group maintains a nearly complete database, covering reactions

from πN and KN elastic scattering to γN → Nπ, Nη, and Nη′.

It is presently the only group determining energy-independent

πN elastic amplitudes from scattering data. Given the high-

precision of photoproduction data already collected and to be

taken in the near future, we estimate that an improved spec-

trum of N and ∆ resonances should become available in the

forthcoming years.

Energy-dependent fits are performed by various groups with

the aim to understand the reaction dynamics and to identify N

and ∆ resonances. Ideally, the Bethe-Salpeter equation should

be solved to describe the data. For practical reasons, approx-

imations have to be made. We mention here: (1) The Mainz

unitary isobar model [16] focusses on the correct treatment of

the low-energy domain; resonances are added to the unitary am-

plitude as a sum of Breit-Wigner amplitudes. (2) Multichannel

analyses using K-matrix parameterizations derive background

terms from a chiral Lagrangian—providing a microscopical

description of the background—(Giessen [17,18]), or from phe-

nomenology (Bonn-Gatchina [19]). (3) Several groups (Argonne-

Osaka [20], Bonn-Jülich [22,23], Dubna-Mainz-Taipeh [21],

EBAC-Jlab [24], Valencia [25]) use dynamical reaction mod-

els, driven by chiral Lagrangians, which take dispersive parts of

intermediate states into account. The Giessen group pioneered

multichannel analyses of large data sets on pion- and photo-

induced reactions [17,18]. The Bonn-Gatchina group included

recent high-statistics data and reported systematic searches for

new baryon resonances in all relevant partial waves. A summary

of their results can be found in Ref. 19.
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